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Abstract. The mechanism for the generation of multipole moments due to an external field is
presented for the Born—Infeld charged particle. The ‘polarizability coefficigntor arbitrary
[-pole moment is calculated. It turns out that~ rg’“, whererg := /[e[/47b andb is the
Born-Infeld nonlinearity constant. Some physical implications are considered.

1. Introduction

Recently, one of us proposed a consistent, relativistic theory of the classical Maxwell field
interacting with classical, charged, point-like particles [1]. For this purpose an ‘already
renormalized’ formula for the total four-momentum of a system composed of both the
moving particles and the surrounding electromagnetic field was used. It was proved that
the conservation of the total four-momentum defined by this formula is equivalent to a
certain boundary condition on the behaviour of the Maxwell field in the vicinity of the
particle trajectories. Without this condition, Maxwell theory with point-like sources is
not dynamically closed: the initial conditions for particles and fields do not uniquely
imply the future and the past of the system. Indeed, the particle trajectories fulfilling
the initial conditions can be chosembitrarily and then the initial-value problem for the
field alone can be solved uniquely. The boundary condition derived this way was called
the fundamental equationWhen added to the Maxwell equations, it provides the missing
dynamical equation: now, particles trajectories cannot be chosen arbitrarily and initial data
uniquely imply the future and the past evolution of the ‘particlefields’ system.

Physically, the ‘already renormalized’ formula for the total four-momentum was
suggested by a suitable approximation procedure applied to an extended-particle model. In
such a model we suppose that the particle is a stable, soliton-like solution of a hypothetical
fundamental theory of interacting electromagnetic and matter fields. We assume that
this hypothetical theory tends asymptotically to the linear Maxwell electrodynamics, in
the weak field regime (i.e. for weak electromagnetic fields and ‘almost vanishing’ matter
fields). This means that ‘outside of the particles’ the entire theory reduces to Maxwell
electrodynamics. Starting from this model, a formula was found, which gives in a good
approximation the total four-momentum of the system composed of both the moving
(extended) particles and the surrounding electromagnetic field. This formula uses only
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the ‘mechanical’ information about the particle (position, velocity, masand electric
chargee) and the free electromagnetic field outside of the particle. It turns out that this
formula does not produce any infinities when applied to the case of point particles, i.e. it
is ‘already renormalized’. Using this philosophy, this formula was taken as a starting point
for a mathematically self-consistent theorypufint-like particlesinteracting with the linear
Maxwell field. The ‘fundamental equation’ of the theory is precisely the conservation of
the total four momentum of the particlesfields system defined by this formula.

At this point a natural idea arises, to construct a ‘second-generation’ theory, which better
approximates the real properties of an extended particle, and also takes into account possible
deformations of its interior, due to the strong external field. In [2] a simple mechanism
for the generation of the electric dipole moment of a particle was proposed. As a specific
model for the particle we have used the Born—Infeld particle described by the Born—Infeld
nonlinear electrodynamics.

In the present paper we prove that a similar mechanism is responsible for the generation
of higher multipole moments.

Mathematically, such a polarizability is due to the elliptic properties of the field
equations describing the statics of the physical system under consideration. Given a
particular model of the matter fields interacting with electromagnetism, the ‘particle-at-
rest’ solution corresponds to a minimum of the total field energy. It is, therefore, described
by a solution of a system of elliptic equations (Euler-Lagrange equations derived from
the total Hamiltonian of the hypothetical fundamental theory of interacting matter fields
and electromagnetic field). Far away from the particle, these equations reduce to the free
Maxwell equations.

This solution corresponds to the vanishing boundary conditions at infinity. The physical
situation of a ‘particle in a non-vanishing external field’ corresponds to the solutitimeof
sameelliptic equations but witmon-vanishingboundary condition., at infinity. More
precisely, we assume that the electric field at infinity varies as

EN(@) = Efy(@) + EL (2) @
where

Ef (w) = QY ,x?.. .x" @)
(thel-pole tensorQ;,;, ; is completely symmetric and traceless) and the regularEfgd'(tz)
vanishes at infinity.

Suppose that the free particle (the unperturbed solution) possesses no internal structure.
This means that for vanishing external fiel2l = O the regular parTEﬁ‘eg reduces to the
simplest Coulomb field describing the monopole with a given electric chardgowever,
for a non-trivial perturbatior@ the regular field may contain an extra multipole term at
infinity, of the type

Bk — r2./\/lkl42milxi2 Loxl— ((21 + l)/l)xk/\/liliz,,,i,xilxiz Lxt 3)
M- F3+2 :
The reason for the creation of this extra multipole moments is the nonlinearity of the field
in the strong-field region. For weak perturbations, the relation betweehbk moment
M.,i,..i, of the particle created this way and thpole momentQ; ;, ; of the external field
is expected to be linear in the first approximation:

Misiz..ir = Ki Qisig.iy 4
and the coefficient; describes the ‘deformability’ of the particle, due to nonlinear character

of the interaction of the matter fields (constituents of the particle) with the electromagnetic
field.
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The coefficients; arise, therefore, in a manner similar to ‘reflection’ or ‘transmission’
coefficients in scattering theory. Equations (2) and (3) describe two independent solutions
of the second order, linear, elliptic equation describing the free, statical Maxwell field
surrounding the particle. Outside the particle they may be mixed in arbitrary proportions.
Such an arbitrary mixture is no longer possible if it has to match an exact solution of
nonlinear equations describing the interior of the particle. Relation (4) arises, therefore, as
the matching condition between these two solutions.

In the present paper we assume that the unperturbed particle is described by the
spherically symmetric, static solution of nonlinear Born—Infeld electrodynamics wéth a
like source. We find the two-dimensional family of all theole perturbations of the above
solution explicitly. They all behave correctly at— oco. Forr — 0, however, there is
one perturbation which remains regular, and another one which increases faster then the
unperturbed solution. The variation of the total field energy due to the latter perturbation is
divergent in the vicinity of the particle, which we consider to be an unphysical feature. We
conclude that all the physically admissible perturbations must be proportional to the one
which is regular at 0. At — oo this solution behaves like a mixture of the solutions (2)
and (3). We calculate the ratio between these two ingredients and we interpret it/és the
polarizability coefficient of the Born—Infeld particle.

2. Perturbations of the Born—Infeld particle

Born—Infeld electrodynamics [3] (see also [4]) are defined by the following Lagrangian:

Lo =02 [1— V1 - 2625 — b4 P?] )
where S and P are the following Lorentz invariants:

Si= _%lfuvflw=%(E2—Bz) (6)

P = _%euvkxfﬂvf)« =FEB (7)

and f,,, is a tensor of the electromagnetic field defined in a standard way by a four-potential
vector. The parameteb™ has the dimensions of field strength (Born and Infeld called it
the absolute field3]) and it measures the nonlinearity of the theory. In the limit> oo

the LagrangianCg, tends to the standard Maxwell Lagrangian

L:Maxwell =S. (8)

Note that field equations derived from (5) have the same form as the Maxwell equations
derived from (8), i.e.

VxE+B=0 V-B=0 (9)

VxH-D=j V.-D=p (10)

(to obtain the Born—Infeld equations with sourgeandj one has to add tdg, the standard
interaction Lagrangianj*A,"). However, the relation between field&, B) and (D, H)
is now highly nonlinear:

Do— 0Lp _ E+b%(EB)B
- dE  \/1—b2(E?- B? — b-4(EB)?

(11)

_p-2
gL _ B - b *(EB)E ‘ 12)
0B \/1-b2(E?—- B?) — b-4(EB)?
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The above formulae are responsible for the nonlinear character of the Born—Infeld theory.
In the limit 5 — oo we obtain linear Maxwell relationsD = E and H = B (we use the
Heaviside—Lorentz system of units).

Now, consider a point-like, Born—Infeld charged particle at rest. It is described by
the static solution of the Born—Infeld field equations (9)—(12) with= ed(r) andj = O,
wheree denotes the electric charge of the particle. ObviouBly= H = 0 (Born—Infeld
electrostatics). Moreover, the spherically symmetric solutioW efD = ¢§(r) is given by

the Coulomb formula
e

DO = —7F7T. (13)
A3
Using equation (11) one can easily find the correspondipdield:
D
Eo = 0 S (14)

‘/1—|—b—2DS 47”,/;""4—;’(‘)1

where we have introduceq) := +/|e[/4mb. Note that the fieldEy, in contrast toDy, is
bounded in the vicinity of a particleiEy| < |e|/4nré = b. It implies that the energy of a
point charge is already finite.

Now, let us perturb the static Born—Infeld solutid#y:

E=Ey+E (15)

where E denotes a weak perturbation, i1@| < |Eg|. The correspondind field may be
obtained from (11). In the electrostatic case, Be= H = 0, equation (11) reads:

E D
D= — E=—__ . 16
V11— b—2E? V14 b2D2 (16)

Therefore, using equation (15) we obtain

1
J1—b2E}

where QE?) denotes terms vanishing f¢§7| — 0 asE? or faster. In the present paper
we study only thdinear perturbation i.e. we keep in (17) terms linear B and neglect
O(Ez) Therefore, in this approximation the perturbatllm D — Dy of the field Dg
equals

D = Do+ (E +b~%(DoE) Do) + O(E?) (17)

1

J1—b2E2

The fieldsE and D fulfill the following equations:
VxE=0 v.D=0. (19)

The first implies thatE = —Vg. Therefore, using equation (18, - D = 0 leads to the
following equation for the potentiap:

i (7) [ - 1] =o 2

where A stands for a three-dimensional Laplace operatdRin Observe that in the limit
ro — 0 (i.e. Maxwell theory) we obtain simply the Laplace equatlmz) = 0 for the
electrostatic potentlab Using spherical coordinates I&® the Laplace operatoh reads:

2

S 102 1,
A¢—;ﬁ(’"¢)+rj[/ o] (21)

(b"2(DoE)Do + E) = /1+ b=2D3 (b"(DoE)Do + E) . (18)

D=



Born—Infeld nonlinear electrodynamics 273

where L? denotes the Laplace—Beltrami operator on the unit sphere (it is equal to the square
of the quantum-mechanical angular momentum).

We see that due to the spherical symmetry of the unperturbed solitprdifferent
multipole modes decouple in the above equation. Therefore, any solution of (20) may be
written as follows:

$(x) = api(x) (22)
=1

where

~ v

¢ (r, angles := ) Y;(angles (23)

r

and ¥; denotes thd-pole eigenfunction ofL?, i.e. L?Y, = —I(I + 1)¥;. Obviously, an
eigenfuctiony; is related to thé-pole moment tensor by

Y[ = r_l )Cil .. ..Xil Qiliz...iz' (24)

Observe that we do not consider the monopole term @&0) in (22). This term
corresponds to the gauge transformatiorpcnd due to the gauge invariance of (20) it is
inessential (we may fix the gauge by putting, eqy.= 0).

Let us look for thel-pole-like deformation, i.e. for a functioaz. Inserting the ansatz
(23) in equation (20) we obtain the following equation fb(r):

” l(l + 1) ro 4 ” 6 ’ 6
(xy, - w,) + (7) (qf, - wj+ rzxp,) =0 (25)
where W, stands fordW;/dr. In section 3 we find the two-dimensional space of solutions
of (25).

3. Exact solution of the ‘deformed’ Laplace equation

Let us note that for > rp, equation (20) reduces to the standard Laplace equation with
two independent-pole-like solutions: the one corresponding to the constgmie moment
(it varies asr'*1) and the external-pole solution (varying as™).

On the other hand, a basis may be chosen corresponding to the behaviduraof
r — 0. From the asymptotic analysis of (25) it follows that there is a solution which varies
asr® and another one which varies as Let us define®d; := r~%¥; and introduce the
following variable:

7= — (;)4 (26)

Using (25) one obtains the following equation fdy:

d>®, 9 15 \d®d, 30—I(+1
1-2)——& -z 7%, =0. 27
‘-2 +<4 4Z) dz 16 : @7)
This is a hypergeometric equation [5]. A hypergeometric equation for a funatien:(z)
zA-2u" +[c—(@+b+D]u' —abu=0 (28)

has two independent solutions. One of them is given by the hypergeometric function
2Fi(a, b, ¢, z). The other one has the following form (for#£ 1):

R —c+la—c+1,2—c 7). (29)
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Therefore, the general solution of (25) reads

W) = Ay 1S F 1+6 5-19 (r 4 BirF l+1 I 1 r\*
r ro — r === )
! ) NI R R S U L A L

(30)

The first term on the right-hand side of (30)rat> 0 varies as-®, the other one as.

Let us note, however, that the second term (varying)aorresponds to the unphysical
solution. To see this let us look for the behaviour of the electric figl¢produced’ by it
in the vicinity of the Born—Infeld patrticle, i.e. for — 0. From equations (23) and (24) we
obtain

~ ~ r3 /4—
F=—0p = —é[x .Ql,, (3";( xrx"> TI0+D), (

O

l[x - Qx +1[x - Q]k)

+0(r") (31)
where

[x-Qli=r"'x".. . x"Q; 4 (32)

[x-Qly i=r ™ x"Q; i (33)

Therefore, due to the first term in (311’7; exceeds the unperturbed fiekd itself.
Moreover, the ‘perturbationE' leads to infinite variation of the total field energy. The
‘electrostatic’ energyi corresponding to electric inductiaP is given [3, 4] by

H = / b? (\/1+ b-2D2 — 1) . (34)

Therefore, its variation reads

D{sD ~
§H|p, = / ‘ = / EksDy ofx = / E5Dy ox. (35)

J1+b 2D2

Now, let us investigate the behaviour &,D for r — 0. From (18) it follows that
this expression contains highly singular term which varies&s« radial component of.
Using the expansion (31) we see that the first term is purely tangential, i.e. it is orthogonal to
any radial vector. However, the second one does contain a radiakpdut)r3/(1+1)[x- Q]
and this wayEoD produces non-integrable singularityr —3[x-Q]. Therefore, we conclude
that the solution varying as for r — 0 has to be excluded from our consideration, i.e.
= 0. This way the solution of (25) is given by

l+6 5-1 9 r\*
v A r8,F = (=) 6
1(r) = A1, 1( 7 1 (m)) (36)

4. Multipole moments of the particle

Knowing the exact solution of (25), we are ready to calculatétthdeformability coefficient

of the Born—Infeld particle. We know that at infinity, i.e. fers> ro, ¥; is a combination

of two solutions: one varying as*! (it corresponds to the constahpole field) and the
other varying as-~' (corresponding to the externaipole solution). Due to the fact that

the space of physically admissible solutions is only one dimensional (see equation (36)),
the proportion between these two solutions is no longer arbitrary. The ratio between them
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therefore has physical meaning. To find this ratio we shall use the following property of a
hypergeometric functionFy(a, b, c, z) [5]:

'ie)l'(b — 1
2Fi(a,b,c,z) = M(—Z)ﬂ 2F1<a, a+1l—c,a+1-b, Z)
I'(c)['(a — b) b 1
7F(a)r(c—b)(_Z) 2F1<b,b+l—c,b+1—a,z> (37)

where I denotes the Eulef-function. This identity allows us to find the asymptotic
behaviour ofy; at infinity. Using equations (36) and (37) one immediately obtains

I 5-1 3-2 [ro\*
vy =Xl - 5 =
1(r) r 21( 2 a4 <r))+

[+6 [+1 542 4
et (8 LS4 ()
where
N1
X, = A, 1“1(4)1"( 4(21+1)) o (39)
LI+6)rGl+4)
Nl
v — ré&rée@+) 541 (40)

"'TdG-mHrde-1)

Note that the first term on the right-hand side of (38) at infinity varied‘@sand corresponds
to the constant-pole field E,, given by (2). The second term variesra$ and corresponds
to the external-pole solutionEy, given by (3). We interpret the ratio between these two
ingredients in equation (38):

_h
K] .= —

X
as the ‘deformability coefficient’ (more precisely, thi deformability coefficient) of the
Born-Infeld particle. It measures thigpole momentM,, ; of the particle generated by the
constant-pole momentQ;, ; of the external electric field. Using equations (39) and (40)
we obtain

(41)

_ TGUA)IGU+MT(—3(2 +1) 211
ré¢e-mrée-nré@+n °
Obviously, in the limit of Maxwell theory 5, — 0), the external electric field does not

generate thé-pole moment of any particle. Therefore, this mechanism comes entirely from
the nonlinearity of the Born—Infeld theory.

(42)

5. Physical implications

In this paper we have used a very specific model of nonlinear electrodynamics. There is
a natural question: why this particular model? It turns out that among other nonlinear
theories of electromagnetism, the Born—Infeld theory possesses very distinguished physical
properties [6]. For example, it is the only causal spin-1 theory [7] (apart from the Maxwell
theory). The assumption that the theory is effectively nonlinear in the vicinity of a charged
particle is very natural from the physical point of view. Actually, we have learned this from
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guantum electrodynamics. There have been attempts to identify the non-polynomial Born—
Infeld Lagrangian as an effective Euler—Heisenberg Lagrangian [8]. It has been shown [9]
that the effective Lagrangian can coincide with equation (5) up to six-photon interaction
terms. Recently, there has been renewed interest in Born—Infeld electrodynamics due to the
investigation in the string theory (see, e.g., [10]), where equation (5) was not postulated,
but was derived.

Now, let us make some comments concerning physical implications of the obtained
results. First of all taking = 1 one obtains

k1 = —1.854 07r¢ (43)

which reproduces the result obtained in [2]. In [2] it was mentioned thal ferl one
might describe the polarizability coefficient of the proton in this way. According to [11],
we havex; = (1214 0.9) x 10~ fm>. To fit this value one has to takg ~ 0.09 fm. The
total mass of the corresponding Born—Infeld unperturbed field accompanying such a patrticle
is about 32 electron masses. We see that the main part of the proton total mass cannot be
of electromagnetic nature and has to be concentrated in the material core of the particle.
Unfortunately, there are no experimental data concerning particle polarizability4dr.
It will probably be a highly non-trivial task to measure these quantities experimentally.
It would be very interesting to have the possibility of comparing such quantities with
equation (42).
Let us note thaks and«s vanish due td"(0) in the denominator of equation (42). All
otherx; # 0. It does not mean that the particle is not polarizablei/fer 3 and/ = 5.
It is true in the linear approximation only. However, this result suggests that in these two
sectors it is much more difficult to polarize the particle than in the other ones.
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